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SUMMARY

A numerical approach for the aeroelastical stability of an over-expanded rocket engine is proposed in
this paper. The main idea is to o�er a better understanding of the repercussions likely to appear from
the aeroelastic coupling in terms of side loads that may be responsible for damage e�ects on the engine.
After a brief description of the stability model issued from previous works (Pekkari’s team) and details
upon a numerical �uid–structure coupling code, comparative calculations are conducted. The stability
model is then called into question and a �ner analysis is proposed to explain its major tendency to
over-predict the aeroelastic frequency shift in comparison with numerical coupling results. Copyright ?
2005 John Wiley & Sons, Ltd.
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1. INTERESTS FOR THE STUDY

During the starting phase of a rocket engine, a �rst ‘blast’ wave may sweep the whole nozzle
to initiate the �ow. Behind that �rst pressure discontinuity, the �ow gets established by adjust-
ing to the outside pressure ratio. That phase corresponds to the existence of a matching shock
pattern, of which the longitudinal position is governed by the pressure �eld (see Figure 1).
Undesirable e�ects are particularly strong at low-altitude �ight where the external pressure

is strongest and opposes itself to the �ow [1]. Amongst them, we may cite side load e�ects
that are due to a loss of symmetry of the �ow (see Figure 2) whose origin is still kept out
of understanding. Their e�ects may be strong enough to damage the engine and deviate the
launcher trajectory.

∗Correspondence to: E. Lefran�cois, Laboratoire Roberval FRE2833, Universit�e de Technologie de Compi�egne, 60205
Compi�egne Cedex, France.

†E-mail: emmanuel.lefrancois@utc.fr

Contract=grant sponsor: PILCAD — Plateforme Inter-Laboratoires de CAlcul Distribu�es
Contract=grant sponsor: University of Technology of Compi�egne

Received 10 December 2004
Revised 31 March 2005

Copyright ? 2005 John Wiley & Sons, Ltd. Accepted 24 April 2005



350 E. LEFRANC�OIS

Figure 1. 2D numerical simulation of transient starting phase—numerical Schlieren.
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Figure 2. (a) Axial section of a rocket engine; and (b) parietal pressure pro�le.

This phenomenon is known for a long time since the �rst works according to this, date
back to the 1920s, notably with Prandtl, Meyer and Stodola who worked on over-expanded
jets (i.e. with presence of a separation shock) [2]. The interest increased in the sixties when
the same phenomenon was observed on the J2S engine of the Saturn V launcher [3]. From
1960 to 1966, NASA undertook a vast program of research to better understand the physics
of side loads. It led to numerous theories and a huge amount of experimental data for side
loads. However, the exact understanding of the physics underlying such a phenomenon is still
not totally clear and data correlations are complicated at best.
Today, this problem still appears in rocket engines such as the SSME of the American

space shuttle [4], the Vulcain engine of the �nal version of Ariane V launcher [5–7] and
other Japanese and Russian rocket engines.
The origin of the problem may be explained by the choice of the design in report with the

performances and employed materials for the construction of the engine. On the one hand,
the performances of a engine are directly linked to the thrust, proportional to the report of the
sections of the exit and of the throat of the divergent. On the other hand, the weight being the
principal concern in astronautics, the choice of materials more rigid and heavier would have
in fact for principal drawback to decrease the payload in a notable manner and to reduce all
pro�tability hope for the launcher.
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Three possible causes of appearance of the side load e�ects currently keep the attention of
the researchers [5]:

1. The pressure �uctuations in the separation and recirculation zones downstream the shock.
The interest evocated by many laboratories of the European community is well expressed
in Reference [5].

2. The transition between two kinds of separation �ow: the free separation shock and the
restricted separation shock. This transition may occur during the start-up process. Both
cases lead to di�erent wall pressure distributions that may generate side-loads if the
symmetry is not ensured. This phenomenon has been experimentally and numerically
observed [8, 9].

3. The aeroelastic coupling [10–12].

Aeroelasticity has been studied for at least forty years from a theoretical point of view [13–15]
and more recently a numerical approach has been developed and proposed [16–18]. The
development of coupled models for aeroelasticity is quite recent due to its multidisciplinary
nature. Moreover, its application to rocket engines has rarely been studied [12, 19]. It seems
reasonable for this case to focus on the structural aspect, the engine being above all, the
‘organ’ we wish to preserve.
The current studies conducted for the understanding of the likely e�ect of aeroelastic cou-

pling on the side load e�ects sweep a rather wide range [5]. It appears that the �rst stability
model for aeroelastic e�ects on �exible rocket engines was proposed by Pekkari [12]. Based
on an extreme simpli�cation of the parietal pressure pro�le of the �ow, it notably made ob-
vious the possible appearance of phenomena such as divergence (static instability) according
to the position of the shock. This team notably reinforced the approach with many experi-
mental measures on di�erent engine con�gurations [10]. The current tendency concerns the
validation of behaviour models as well as with the use of numerical tools [20, 21] than with
experimental measures on �exible and reduced scale engines. It is realized in the framework
of a European research group Flow Separation Control Device (FSCD) and a French research
group A�erodynamique des Tuy�eres et Arri�ere-Corps (ATAC). This latter notably includes the
CNES (French Space Agency) the SNECMA (Aerospace Propulsion and Equipment Group)
and the ONERA (French Aeronautics and Space Research Center) [22]. This paper is the
result of research activities supported by ATAC.
The main concern of the present work is to increase the understanding of the stability

model. Previous works permitted to improve the model in taking into account both static
(such as divergence) and dynamic instabilities (such as �utter) [20]. The objective is not to
study speci�cally the aeroelastic e�ects on side loads, but to study the local behaviour of a
�exible structure in response to a separation shock. The study domain will thus be restricted
to a half divergent nozzle (see Figure 1). Moreover, the �uid is supposed inviscid in order
to signi�cantly reduce CPU cost comparatively to viscous cases. However, recent calculations
including viscous and turbulent e�ects have shown a good agreement with the results presented
in this paper [23].
A �rst part is dedicated to the presentation of the stability model from Pekkari’s works [12]

for a �exible rocket engine in the presence of a separation shock, model that has been
improved. A second part is dedicated to the coupling numerical model composed of a structure
and a �uid code. Parallel libraries are used to permit messages passing between the two
calculation codes and to signi�cantly reduce CPU cost for solving the �uid equations. Finally,
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coupled calculations are presented in order to show the tendency of the stability model to
over-predict the frequency shift. This confrontation will come to support a fourth and last
part that will question the model and will propose an improvement in accordance with other
current works [9].

2. AEROELASTIC STABILITY MODEL

In this section, we brie�y introduce the general way to study the stability of a �exible structure
in relation with external �ows. In general, the �nite element approximation of the equilibrium
relation for a �exible structure leads to the system

[M ]{ �W}+ [C]{Ẇ}+ [K]{W}= {F} (1)

where [M ], [C] and [K] are, respectively, the mass, damping and rigidity matrices. {W},
{Ẇ} and { �W} de�ne the displacements, velocity and accelerations nodal vectors. {F} de�nes
the forcing vector resulting from the coupling with aerodynamics. The forcing term is usually
decomposed as follows:

{F}=[Kaero]{W}+ [Caero]{Ẇ} (2)

The �rst term represents instantaneous structure response to the pressure distribution. The last
term introduces a phase di�erence between both �uid and structure. Introducing Equation (2)
in Equation (1), it leads to

[M ]{ �W}+ [C − Caero]{Ẇ}+ [K − Kaero]{W}= {0} (3)

2.1. Pekkari’s stability model

Pekkari’s model [12] �nds its main contribution in the choice of the parietal pressure approx-
imation of the �ow that undergoes an expansion from the throat to the shock. The e�ect of
the deformed wall due to the displacement w of normal derivative @wn=@s (s is the curvilin-
ear coordinate along the engine wall), is taken into account by the so-called ‘piston’ theory
[24] (cf. Figure 3(b)). Mathematically, the wall pressure p(x;w) is then obtained in accordance
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Figure 3. (a) Half over-expanded rocket engine; and (b) parietal pressure pro�le.
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with the expressions:

p(x;w)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p∞(x) +
�∞U 2

∞√
M 2∞ − 1

@wn
@s
; x¡xsep

p(xsep)=psep; such as �=
psep
patm

=1=15; 1=16; : : : x= xsep

patm; x¿xsep

(4)

where p∞(x) is the static pressure resulting from the gas expansion (extracted from expansion
�ow or shock tables), patm is the atmospheric pressure. The following variables �∞, U∞ and
M∞, respectively, de�ne the local values of the density, the axial velocity and the Mach
number. From this analytical pressure pro�le, a normal shock is considered at location xsep
by using a separation criterion (designed by �) such as Schmucker criterion [3].
This study being dedicated to a stability analysis, only aerodynamics loads resulting from

shock displacements will be taken into account. We may then reduce the expression for the
aerodynamic load such as∫ xsep

xosep

fa ds= n(patm − psep)(xsep − xosep) (5)

where xosep corresponds to the initial shock position and n the time dependent normal vector
external to the wall. Written in a �nite element context, we obtain

〈�W 〉{F}=
∫ xsep

xosep

�w:n(patm − psep) dS= 〈�W 〉[Kaero]{W} (6)

with 〈�W 〉 the global nodal value of test-function.
Damping e�ects due to material or to external devices have been neglected. Recalling

Equation (2), it consists in choosing

[Caero]= [0] and [Kaero]{W}= B

−(dp∞=dx)J

⎧⎨
⎩
nx
ny
0

⎫⎬
⎭
J

@wn
@s

∣∣∣∣
J

(7)

where J is the index of the node located at xosep, nx and ny the normal vector components
(see Figure 4). B de�nes the shifting coe�cient [9] for the pressure, given by

B=
p(x;w)− po∞(x)
Pc(@wn=@s)

(8)

where Pc is the chamber pressure.
Equation (3) may be transformed in a classical eigenvalue problem by using the following

decomposition form:

{W (t)}= { 	Wj}ei
j t

where 
j is the jth aeroelastic frequency associated to the eigenvector { 	Wj}. It leads to the
following free vibration model:

(([K]− [Kaero])−
2j [M ]){ 	Wj}= {0} (9)
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Figure 4. Model for �exible nozzle.

The evolution of the aeroelastic frequency pro�les, 
j(xJ ), of the structure is then obtained in
conducting a classical calculation of the eigenmodes for each position of the shock (according
to xJ with nodal index J ) along the �exible part of the rocket engine. Projecting Equation (9)
on the M-orthonormal eigenvectors { 	Wj}, it leads to


2j = 〈 	Wj〉[K − Kaero]{ 	Wj} (10)

We will call [X ] the global set of eigenvectors of the structure

[X ]= [{ 	W1} : : : { 	Wj} : : :] (11)

2.2. Extension of the model to dynamic instabilities

Pekkari’s model considers that the eigenvectors { 	Wj} remain unchanged with regards to the
shock position, only the eigenvalues 
j(xJ ) being changed. However, the updating of the
eigenvectors for each new shock position permits to observe coalescing frequencies phenom-
ena analogous to those encountered in a �utter behaviour. This constitutes what we call the
extended model that has been part of previous works [20]. The main drawback is the necessity
to reconduct the eigenvectors calculation for each shock position (Equation (9)). However, it
is possible in such a way similar to modal decomposition, to only consider the �rst eigen-
vectors in order to reduce calculation cost.
The global process used to obtain aeroelastic frequencies function of initial shock position

may be decomposed as follows:

Parameters initialization and global data calculations:

• Calculation of pressure separation: psep = �×patm:
• Assembling of [K] and [M ].
• Pekkari’s model: Computing of [X ].

Eigenvalues calculation:
J-loop on nodes located on xsep = xJ

1. Extraction of shock position xJ .
2. Calculation of corresponding chamber pressure such as p(xJ )=psep.
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Table I. Material properties.

Young modulus Thickness Poisson coe�cient Mass density

2:2× 1011 N=m2 1× 10−2 m 0.0 2000 kg=m3

Table II. Fluid properties.

Range for Pc (Pa) Tc (K) Range for shock position (m) �=patm=psep pa (Pa)

[0:5–6:5]× 105 2400 [0:1–2:55] 15.5 105

3. Calculation of B (Equation (8)).
4. Assembling of [Kaero] (Equation (7)).
5. Case of:

• Pekkari’s model: computing of 
j(xJ ) for j=1; : : : ; N (Equation (10)).
• Extended model: computing of 
j(xJ ) and { 	Wj} for j=1; : : : ; N (Equation (9)).

End of J-loop

2.3. ‘Analytical’ validation of the extended stability model

Both models can be tested by directly introducing the forcing term given by Equation (6) in
a structural analysis code. The objective is to verify the instabilities predicted by each model
for given material properties.
The structure code is based on the �nite element method and will be described in a next

subsection. It solves the system (Equation (1)) by using a Newmark scheme for the time
discretization. The only modi�cation consists in directly applying the solicitation (Equation
(6)) after extracting the nodal displacements of the previous time step.
The domain of calculation is illustrated in Figure 4. It consists on a two-dimensional geom-

etry with dimensions of a Vulcain class engine. However, in order to reduce two-dimensional
e�ects, the pro�le of the nozzle has been chosen straight instead of parabolic. Only the di-
vergent part is supposed �exible and is meshed using two-node beam elements. The mesh is
made of 40 uniformly distributed nodes.
The material and �uid properties are respectively given in Tables I and II. The value

given to the separation criterion (patm=psep) has been obtained from previous two-dimensional
�uid calculations on the same domain. One may also show that stability results are very little
dependent on the value given to this separation criterion.
The results obtained from the Pekari’s model (Equation (10)) for each nodes corresponding

to an initial shock position, are presented in dashed lines in Figure 5. The results obtained
from the extended version (Equation (9)) are presented in Figure 5 in continuous lines.
We can make the following observations:

• For an initial position surrounding xsep ≈ 0:8 the �rst natural mode collapses with the
zero-axis expressing a buckling e�ect. This behaviour is also reported in using the
Pekkari’s model;
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Figure 5. Analytical pro�les for the �rst three modes.

• For xsep belonging to the range [1.4–1.8], the �rst two natural modes collapse to complex
conjugate eigenfrequencies. This expresses a dynamical instability similar to �utter. This
case is not observed with Pekkari’s model for which all frequencies remain real. It is
due to the fact that for this model, eigenvectors used for modal projection are supposed
unchanged and prevent this instability to appear. However, both models remain close of
the global trend.

Remark
For a smaller Young modulus (results not shown here) that strengthens the collapsing modes
e�ect, we observe for the Pekkari’s model that the �rst two natural modes pass each other
with no mutual interaction as swapping-modes.

The third calculation corresponds to an analytical validation of these previous results in
introducing the forcing form (Equation (6)) into a structure code dedicated to dynamic sim-
ulation. The calculation has been conducted in applying the solicitation on several nodes to
obtain the results presented in Figures 6–8.
For each case, we represent on the upper graph the temporal evolution of the radial dis-

placement taken at the considered point. The time step has been taken equal to �ts = 1:10−4 s
and 2000 steps have been conducted. The lower graph is the spectrum obtained from a ‘Fast
Fourier Transform’ (using the Matlab function): it is applied to the temporal signal of the
radial displacement.
These results show the frequencies deviation forecasted by the stability model and con�rm

the coalescing e�ect between the �rst two modes and its exponential growth typical of the
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Figure 6. Results for xsep = 0:45 and 0:85 m.
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Figure 7. Results for xsep = 1:10 and 1:54 m.

dynamical instabilities for the case xsep = 1:54 m. This clearly concludes the necessity to use
the extended model to determine aeroelastic frequencies. Tendencies predicted by both models
being similar, it may be suggested to �rst conduct Pekkari’s model and then, to conduct
extended model for nodes where several frequencies show tendency to collapse.
However, these results do not constitute a complete validation because of the introduction

of the particular form of the solicitation. In the following sections we will attach ourselves to
validate the stability model in a more objective way in taking two di�erent codes, respectively,
dedicated for �uid and structure calculations and letting them proceed to their own coupling.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:349–369



358 E. LEFRANC�OIS

-1.5
-1

-0.5
0

0.5
1

1.5

R
ad

ia
l d

is
pl

ac
em

en
t (

m
)

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

x 10-6

Frequencies (Hz)

0 50 100 150 200 250 300 350 400 450 500

Frequencies (Hz)

S
pe

ct
ru

m

24.41

58.59

68.36

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
-4

-2

0

2

4
x 10-6x 10-5

Time (s)
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Time (s)

R
ad

ia
l d

is
pl

ac
em

en
t (

m
)

0
0.2
0.4
0.6
0.8

1
1.2

x 10-6

S
pe

ct
ru

m

87.89

195.3
14.65

136.7 195.3

Figure 8. Results for xsep = 1:94 and 2:20 m.

3. NUMERICAL MODEL FOR FLUID–STRUCTURE INTERACTION

The principle of the coupling is that developed primarily during work referred in Refer-
ence [20]. It consists of two codes dedicated to compute the structure deformation and the
�uid �ow, respectively.

3.1. Structure calculation

A �nite element technique is used for space discretization of the �exible structure. For general
cases including geometric non-linearities, it leads to the non-linear system

[M ]
{
@2u
@t2

}
+ {fint(u; t)} − {fext}=0 (12)

where [M ] is the global mass matrix, {u} the nodal displacements vector, {fint(u; t)} the non-
linear internal e�orts, and {fext} the external forces resulting from aerodynamical coupling.
Main characteristics of the solver are:

• A Total Lagrangian Formulation is employed to calculate the deformations of a �exible
structure under large displacements hypothesis [25];

• The resolution of the resulting non-linear system is obtained using a Newton–Raphson
iterative method [26, 27];

• Two �nite elements are proposed in geometrical non-linearities assumptions, a two-
dimensional two-nodes beam element and an axisymmetric shell element [11, 28, 29];

• An implicit Newmark scheme is used for temporal resolution of dynamical terms.
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3.2. Fluid �ow calculation

The global set of equation governing inviscid and compressible �uid �ow on a two-dimensional
moving domain are given by

@
@t

{JU}+ J
(
@{Fx}
@x

+
@{Fy}
@y

)
=0 (13)

where {U} are the conservative variables, {Fx}= {Fcx} − wx{U} the convective �ux along
x-direction, and {Fy}= {Fcy} − wy{U} the convective �ux along y-direction
with:

{U}=

⎛
⎜⎝
�
�u
�v
�e

⎞
⎟⎠ ; {Fcx}=

⎛
⎜⎝

�u
�u2 + p
�uv

(�e+ p)u

⎞
⎟⎠ ; {Fcy}=

⎛
⎜⎝

�v
�uv

�v2 + p
(�e+ p)v

⎞
⎟⎠ (14)

with � the mass density, u and v, respectively, the components of �uid velocity in (x; y)
system, e the total energy per unit of mass and p the local pressure given by the law of
perfect gas

p=�rT =(�− 1)(�e − 1=2�(u2 + v2))

with the temperature T , �=1:4 and r=287u:SI . The variables (wx; wy) represent the local
velocity components of the domain. The variable J de�nes the local Jacobian that corresponds
to the determinant of Jacobian matrix. This one expresses the transformation relations between
a �xed and a moving space coordinates system.
Main characteristics of the solver are:

• A triangular �nite element is used for the spatial discretization. A linear approximation
is considered for all variables;

• An explicit Lax–Wendro� scheme is used for temporal discretization [30] with a shock
capturing technique called Flux Corrected Transport [31] in zones where positivity is
not ensured (presence of shocks for example);

• In order to ensure geometrical compatibility between both �uid and structure meshes,
and to avoid excessive mesh distortion, a dynamic mesh technique is used to adapt �uid
mesh to wall deformation. A discrete geometric conservation law is applied to ensure the
same precision order and stability property of the solver obtained in the case of a rigid
mesh [32]. From a practical point of view, it consists on integrating �uid �ow equations
on a mesh generated at mid-step between two successive time step tn and tn+1 [28];

• A decomposition domain technique is used to parallelize the �ow solver in order to
signi�cantly reduce CPU cost. The partitioning tool CHACO [33] is used to decompose
the initial mesh on ‘N ’ sub-meshes. Nodes are duplicated on boundaries between each
subdomain in order to compute �uxes the same way than in the single mesh case (see
Figure 9). Due to the iterative process for solving nonlinear �uid �ow, common data are
exchanged between sub-domains before each �ux calculation.

• Stability is ensured using a CFL criterion [34].
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3.3. Coupling

Fluid structure calculations are obtained in coupling both codes such as:

• In order to preserve modularity aspects of each code taken separately, the coupling is
done in establishing a ‘message-passing’ between solvers by using parallel tools o�ered
by Parallel Virtual Machine (PVM) routines [35, 36] (see Figure 10);

• The exchanged data during calculations consist of the wall pressure distribution and time
step from the �uid code to the structure one, and the update of the �exible boundaries
common to both codes from the structure to the �uid;

• The characteristic times being di�erent by several orders of magnitude between both
codes (implicit structure code and explicit �uid code), the updating of wall conditions is
made using a sub-cycling coupling scheme and thus carried out every Nf =s �uid steps;

• Several sub-cycling schemes may be employed depending on the required accuracy (with
CPU considerations) and the type of common wall boundary at the interface. Usually,
kinematic compatibility and energy conservation are not both ensured simultaneously.
The data exchange is here based on a discontinuous coupling scheme (see Figure 11),
which although does not preserve the kinematic compatibility between the meshes of
the �uid and the structure, makes possible to better ensure the transfer of energy and
momentum between the two physics [18].
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Figure 11. Discontinuous �uid–structure coupling scheme.

The exchange process illustrated Figure 11 must be read as follows:

1. From time station ns, we conduct a single time step for structure solver to update
displacements, velocities, strains, etc. New position corresponds now to time station
ns + 1.

2. Transfer to the �uid code of the informations based on the new structure state.
3. From time station nf , we conduct Nf =s consecutive �uid time steps to update all �uid
data on the mesh and reach time station nf +Nf =s = ns+1. The �uid mesh is progressively
deformed in order to match both �uid boundary and new structure deformation.

4. Transfer to the structure code of the new parietal pressure pro�le.
5. Structure deformation is then updated in accordance to these new �uid data in conducting
a new calculation from previous time station ns.

6. A new cycle begins.

4. COMPARATIVE STUDY OF BOTH MODELS

The objective here is to compare results obtained from full �uid–structure calculations with
results predicted by the extended stability model (given in Figure 15).
We show in Figure 12, the calculation domain with the corresponding boundary conditions.

Material properties remain unchanged and given in Table I. The �uid boundary conditions
are based on the characteristics theory for both the entrance and exit of the domain. A slip
condition is applied to the �exible wall and a symmetry condition for the X -axis. Concerning
the �exible structure, both ends of the wall are supposed �xed.
During the mesh adaptation process, mesh velocities are obtained using linear interpolation

in both direction as shown in Figure 13:

• For each interior moving node, locate its radial projection on �exible boundary and search
the two neighbouring nodes whose velocities are known, wup and wdown;

• Calculate wproject of projected point by using linear interpolation between wup and wdown;
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Figure 13. Mesh adaptation.

• Obtain interior node velocity by linear interpolation between wproject and zero-velocity on
symmetrical axis.

A calculation series was carried out for three di�erent mesh sizes:

• 5000 nodes and 104 triangular elements of size equal to �x=2 cm,
• 20 000 nodes and 39× 103 triangular elements of size equal to �x=1 cm,
• 80 000 nodes and 150× 103 triangular elements of size equal to �x=0:5 cm.

The frequency di�erences between calculations conducted on the di�erent meshes ranging
from 1 to 3Hz, it has been decided to only consider the second mesh described above for all
future calculations.
A chamber pressure ranging from 1.5 to 6 bar permits to adjust the shock position along

the divergent, making thus possible the study of the aeroelastic response for di�erent initial
positions.
Each coupling calculation is conducted as follows (see Figure 14):
1. Choice of a pressure chamber Pc to control the separation shock position.
2. The �uid calculation is conducted until convergence is reached (generally in 20 000
steps). For this step, the structure is supposed rigid.
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Figure 14. Calculation of aeroelastic frequencies vs shock position.
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Figure 15. History of pressure variations for di�erent locations of nodes: case xosep = 1:70m.

3. The parietal pressure pro�le is then stored (P(x; 0)), and �exibility is given back to the
structure.

4. Coupling calculation is conducted. We extract P(x; 0) from the instantaneous parietal
pressure pro�le before sending to the structure code to update the parietal deformation
(stability assumption). Nodal pressure and structural displacement are stored for di�er-
ent stations during the coupling process (see Figure 15). Each curve corresponds to a
di�erent node.
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Figure 16. Comparative between analytical and numerical solutions.

5. A Fast Fourier Transform is then applied to the stored pressure and displacement signals
to extract response frequencies (see Figure 16).

In Figure 16 we display results obtained on the one hand from the extended stability
model (full line) and on the other hand, the results obtained by the �uid–structure calculation
(symbols ‘×−×’ and ‘+−+’). We give in X -coordinate, the position of the shock in the rocket
engine and in Y -coordinate the evolution of the �rst three frequencies of the structure. Several
remarks:

• The stability model predicts a �rst zone of static instability (0:75 m¡xsep¡0:90 m)
corresponding to the cancellation of the �rst frequency with a negative imaginary part
(buckling e�ect). There follows a second zone of dynamic instability (1:40 m¡xsep¡
1:80 m) with coalescing between the two �rst frequencies that become complex and
conjugate (similar to �utter e�ect).

• Coupling calculation never detects any buckling e�ect. However, it detects a �rst
frequency fall to 3 Hz with a high damped response of the structure.

• The second unstable zone is perfectly detected. This zone proves to be wider but for a
coalescing frequency equal to 60% the predicted one!

• The variations in results obtained with di�erent sizes of mesh prove to be weak.
• In order to test the limits of the �uid code in terms of spatial precision (2nd order in
space and time), �uid calculations with a higher order scheme (WENO 5th order) [23]
have been conducted and show similar results.

• For extreme position of the shock (near the throat or the exit) one �nds a good agreement
between the values of the �rst three natural frequencies.
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Figure 17. Normalized magnitude of side loads.

In �rst conclusion, the two models prove to be similar from a qualitative point of view
(presences of zones of instabilities) but present di�erences in frequency values.
We also show in Figure 17 the absolute value of the side load function of the time. This

latter is obtained from pressure integration along the �exible wall. Each graph corresponds to
a di�erent initial shock position along the divergent zone. For a position ranging from 0.27
to 0:90 m, the structure has a stable response with a highly damped e�ects for Xsep = 0:50 m.
For a shock position ranging from 1.24 to 1:91 m, the structure undergoes a dynamic

instability such as �utter phenomena, the only frequency being able to be interpreted like the
coalescing of the two �rst frequencies. We illustrate in Figure 18 the pressure contours at
the beginning and at the end of the coupling process for the case xosep = 1:70 m. Both �gures
clearly show the shock displacement in agreement with the wall deformation.
The last calculation corresponding to a shock position such as Xsep = 2:47m shows a return

to a stable behaviour that is developed on the �rst natural frequencies.
The coupled calculations on various sizes of mesh showing weak di�erences, it tends to call

into question the model of stability and its tendency to over-estimate the frequency shift. A
�ner study of the B term (controlling the shifting) present in Equation (7), makes it possible
to bring brief replies. Recent work [10] completed by the original team of the Pekkari’s model
tends to con�rm this observation.
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Figure 18. Pressure contours resp. at the beginning and at the end of the
coupling process : case xosep = 1:70 m.
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Figure 19. Modi�ed con�gurations.

In order to validate this fact, two di�erent ways of investigation have been studied:

• A coupling calculation with a Young modulus reduced by 30% (that gives an increased
theoretical buckling zone ranging between 0.5 and 1m) �nally made possible to detect a
buckling e�ect, which con�rms the model’s tendency to over-estimate the spectral shift.

• Two �uid calculations have been carried out on geometrical con�gurations similar to the
original one (Figure 19) and presenting each one an opening modi�ed respectively by
±1◦.
After extraction of the pressure pro�le resulting from one of these modi�ed con�gu-

rations, p(x;w), and from the initial one, po∞(x), the coe�cient B has been calculated
using Equation (8) recalled below

B=
p(x;w)− po∞(x)
Pc(@wn=@s)

with
@wn
@s
= tan(±1◦) and Pc = 8 bar

and compared with the one obtained from the stability model (Figure 20). The tendency
of the stability model to over-estimate the shift in comparison with results extracted from
2D calculations clearly appears. The coe�cient B may thus be a way of investigation
to improve the predictive qualities of the stability model. A proposal is to conduct 2D
calculations, to calculate its pro�le from Equation (8) and put it into the stability model.
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Figure 20. Shifting aeroelastic coe�cient.

5. CONCLUSION AND PERSPECTIVES

A comparative study has been conducted along this work to show the current limits of a model
dedicated to the stability analysis of an over-expanded rocket engine. Numerical tools for �uid–
structure calculations have been brie�y described in order to test the limits of the stability
model. Its tendency to over-predict the frequency shift but also its capacity to detect static
and dynamic instabilities depending on the initial separation shock position in the divergent
zone has been clearly observed. However, once the instability has been reached, it will be
necessary to conduct structure calculations including large displacement e�ects in order to
verify if the instability tends to a limit cycle oscillation or still growths.
In conclusion, to allow an accurate understanding and prediction of the aeroelastic e�ects,

the extended stability model to dynamical instabilities requires a correction. For the buckling
case, this one can be estimated in correcting coe�cient B from 2D �uid calculations carried
on openings modi�ed geometries. This procedure may be improved from a local point of view
(deformation @Wn=@s) to eliminate the cumulated e�ects generated upstream the current shock
position. But this approach seems to be badly adapted to readjust a frequency coalescing
e�ect.
Current works are consisting in extending �uid–structure calculation to a complete divergent

nozzle with two distinct deformable walls in order to induce a possible dissimetry of the �ow
and side-load e�ects.
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